Comparison Analysis of Random Forest Classifier, Support Vector Machine, and Artificial Neural Network Performance in Multiclass Brain Tumor Classification
Abstract
This study aims to analyze and compare the performance of three main classification models, namely Random Forest Classifier, Support Vector Machine, and Artificial Neural Network, in classifying Multiclass brain tumors based on MRI images. The research method includes exploratory data analysis (EDA), dataset preprocessing with image segmentation using the Canny method, and feature extraction using the Humoment method. The performance of the classification models is evaluated based on accuracy, precision, recall, and F1 score. The analysis results show variations in the performance of the three classification models, with Random Forest Classifier having an accuracy of 0.7, weighted precision of 0.55, weighted recall of 0.7, and weighted F1 score of 0.59; Support Vector Machine having an accuracy of 0.71, weighted precision of 0.5, weighted recall of 0.71, and weighted F1 score of 0.59; and Artificial Neural Network having an accuracy of 0.62, weighted precision of 0.6, weighted recall of 0.62, and weighted F1 score of 0.61. Visualization using box plots also reveals outliers in the performance of the three models. These findings indicate variations and outliers in the performance of the classification models for Multiclass brain tumor classification. Further analysis is needed to understand the factors that influence performance differences and identify ways to improve the classification model performance for brain tumor diagnosis based on MRI images
Downloads
References
M. Kristian, S. Andryana, and A. Gunaryati, “Diagnosa Penyakit Tumor Otak Menggunakan Metode Waterfall Dan Algoritma Depth First Search,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 6, no. 1, pp. 11–24, 2021, doi: 10.29100/jipi.v6i1.1840.
Ainani Shabrina Febrianti, Tri Arief Sardjono, and Atar Fuady Babgei, “Klasifikasi Tumor Otak pada Citra Magnetic Resonance Image dengan Menggunakan Metode Support Vector Machine,” J. Tek. ITS, vol. Vol. 9, No, no. 1, 2020.
R. Susetyoko, W. Yuwono, E. Purwantini, and ..., “Characteristics of Accuracy Function on Multiclass Classification Based on Best, Average, and Worst (BAW) Subset of Random Forest Model,” 2022 Int. …, 2022, [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9888374/
A. S. Nugroho, R. Umar, and A. Fadlil, “Klasifikasi Botol Plastik Menggunakan Multiclass Support Vector Machine,” J. Khatulistiwa Inform., 2021, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/khatulistiwa/article/view/11058
R. Jayapermana, Implementasi Stacking Ensemble Classifier Untuk Klasifikasi Multi Kelas Topik Vaksin Covid-19 Pada Twitter. repositori.unsil.ac.id, 2021. [Online]. Available: http://repositori.unsil.ac.id/id/eprint/4671
R. Andre, B. Wahyu, and R. Purbaningtyas, “Klasifikasi Tumor Otak Menggunakan Convolutional Neural Network Dengan Arsitektur Efficientnet-B3,” J. IT, vol. 11, no. 3, pp. 55–59, 2021, [Online]. Available: https://jurnal.umj.ac.id/index.php/just-it/index
T. A. Mutiara and Q. N. Azizah, “Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine,” J. Infortech, vol. 4, no. 1, pp. 45–50, 2022, [Online]. Available: https://ejournal.bsi.ac.id/ejurnal/index.php/infortech/article/view/12813
A. N. Nafisa et al., “Implementasi Algoritma Convolutional Neural Network Arsitektur Model MobileNetV2 dalam Klasifikasi Penyakit Tumor Otak Glioma , Pituitary dan Meningioma,” vol. 5, no. 1, pp. 53–61, 2023.
S. Amalia, I. Deborah, and I. N. Yulita, “Comparative analysis of classification algorithm: Random Forest, SPAARC, and MLP for airlines customer satisfaction,” SINERGI, 2022, [Online]. Available: https://www.neliti.com/publications/491968/comparative-analysis-of-classification-algorithm-random-forest-spaarc-and-mlp-fo
M. Azhari, Z. Situmorang, and ..., “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4. 5, Random Forest, SVM dan Naive Bayes,” J. Media …, 2021, [Online]. Available: http://www.ejurnal.stmik-budidarma.ac.id/index.php/mib/article/view/2937
D. ARIYOGA, … Metode Seleksi Fitur Filter, Wrapper, Dan Embedded Pada Klasifikasi Data Nirs Mangga Menggunakan Random Forest Dan Support Vector Machine (Svm). dspace.uii.ac.id, 2022. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/38955
P. Wahyuningtias, H. W. Utami, U. A. Raihan, and ..., “Comparison Of Random Forest And Support Vector Machine Methods On Twitter Sentiment Analysis (Case Study: Internet …,” J. Tek. …, 2022, [Online]. Available: http://www.jutif.if.unsoed.ac.id/index.php/jurnal/article/view/168
I. Wardhana, M. Ariawijaya, V. A. Isnaini, and ..., “Gradient Boosting Machine, Random Forest dan Light GBM untuk Klasifikasi Kacang Kering,” … (Rekayasa Sist. dan …, 2022, [Online]. Available: http://jurnal.iaii.or.id/index.php/RESTI/article/view/3682
N. Husin, “Komparasi Algoritma Random Forest, Naïve Bayes, dan Bert Untuk Multi-Class Classification Pada Artikel Cable News Network (CNN),” J. Esensi Infokom J. Esensi Sist. Inf. …, 2023, [Online]. Available: https://ibn.e-journal.id/index.php/KOMPUTASI/article/view/608
R. I. Arumnisaa and A. W. Wijayanto, “Comparison of Ensemble Learning Method: Random Forest, Support Vector Machine, AdaBoost for Classification Human Development Index (HDI),” Sist. J. Sist. …, 2023, [Online]. Available: http://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/2501
E. Erlin, Y. Desnelita, N. Nasution, and ..., “Dampak SMOTE terhadap Kinerja Random Forest Classifier berdasarkan Data Tidak seimbang,” MATRIK J. …, 2022, [Online]. Available: https://journal.universitasbumigora.ac.id/index.php/matrik/article/view/1726
J. Ahmed and M. Ahmed, “Online news classification using machine learning techniques,” IIUM Eng. J., 2021, [Online]. Available: https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/1662
R. Rachmatika and A. Bisri, “Perbandingan Model Klasifikasi untuk Evaluasi Kinerja Akademik Mahasiswa,” JEPIN (Jurnal Edukasi dan Penelit. …, 2020, [Online]. Available: https://jurnal.untan.ac.id/index.php/jepin/article/view/43097
N. Arifin, “Klasifikasi Kematangan Buah Naga Berdasarkan Fitur Warna Menggunakan Algoritma Multi-Class Support Vector Machine,” J. Inform. Teknol. dan Sains, 2023, [Online]. Available: http://jurnal.uts.ac.id/index.php/JINTEKS/article/view/2203
S. Budiman, A. Sunyoto, and A. Nasiri, “Analisa Performa Penggunaan Feature Selection untuk Mendeteksi Intrusion Detection Systems dengan Algoritma Random Forest Classifier,” … J. Sist. Inf., 2021, [Online]. Available: http://sistemasi.ftik.unisi.ac.id/index.php/stmsi/article/view/1550
N. S. M. Tombel, H. F. M. Zaki, and ..., “FEATURE EXTRACTION AND SUPERVISED LEARNING FOR VOLATILE ORGANIC COMPOUNDS GAS RECOGNITION,” IIUM Eng. …, 2023, [Online]. Available: https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2832
I. F. Rahman, Implementasi Metode SVM, MLP dan XGBoost pada Data Ekspresi Gen (Studi Kasus: Klasifikasi Data Ekspresi Gen Skeletal Muscle NGT, IGT dan Diabetes Melitus …. dspace.uii.ac.id, 2020. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/23679
H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” J. Techno. Com, 2020, [Online]. Available: https://eprints.akprind.ac.id/1272/

Copyright (c) 2023 Indonesian Journal of Data and Science

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
License and Copyright Agreement
By submitting a manuscript to the Indonesian Journal of Data and Science (IJODAS), the author(s) confirm and agree to the following:
- All co-authors have given their consent to enter into this agreement.
- The submitted manuscript has not been formally published elsewhere, except as an abstract, thesis, or in the context of a lecture, review, or overlay journal.
- The manuscript is not currently under review or consideration by another journal or publisher.
- All authors have approved the manuscript and its submission to IJODAS, and where applicable, have received institutional approval (tacit or explicit) from affiliated organizations.
- The authors have secured appropriate permissions to reproduce any third-party material included in the manuscript that may be under copyright.
- The authors agree to abide by the licensing and copyright terms outlined below.
Copyright Policy
Authors who publish in IJODAS retain the copyright to their work and grant the journal the right of first publication. The published work is simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0) , which permits others to share and adapt the work for non-commercial purposes, with proper attribution to the authors and the initial publication in this journal.
Reuse and Distribution
- Authors may enter into separate, additional contractual arrangements for non-exclusive distribution of the journal-published version of the article (e.g., institutional repositories, book chapters), provided there is proper acknowledgment of its initial publication in IJODAS.
- Prior to and during the submission process, we encourage authors to archive preprints and accepted versions of their work on personal websites or institutional repositories. This method supports scholarly communication, visibility, and early citation.
For more details on the terms of the Creative Commons license used by IJODAS, please visit the official license page.