[RETRACTED] Comparison of Parameter Estimation Methods in Weibull Distribution

Retracted for violating publication ethics – copied content

  • Dler Najmaldin Van Yuzuncu Yil University

Keywords: Bayes estimator, Lindley Approximation, MCMC, Monte Carlo Simulation, Weibull Distribution

Abstract

The main objective of this study is to compare the parameter estimation methods for Weibull distribution. We consider maximum likelihood and Bayes estimation methods for the scale and shape parameters of Weibull distribution. While computing the Bayes estimates for a Weibull distribution, the continuous conjugate joint prior distribution of the shape and scale parameters does not exist and the closed form expressions of the Bayes estimators cannot be obtained. In this study, we assume that the scale and shape parameters have the exponential prior and they are independently distributed. We use the Lindley approximation and the Markov Chain Monte Carlo (MCMC) method to obtain the approximate Bayes estimators. In simulation study we compare the effectiveness of the parameter estimation methods with Monte Carlo simulations.

Downloads

Download data is not yet available.

References

B. Pandeya, “Estimation of wind energy potential and comparison of six Weibull parameters estimation methods for two potential locations in Nepal,” Int. J. Energy Environ. Eng., vol. 13, no. 3, pp. 955–966, 2022, doi: 10.1007/s40095-021-00444-7.

S. Guo, “A comparison study of three types of parameter estimation methods on weibull model,” Advances in Intelligent Systems and Computing, vol. 1244. pp. 706–711, 2021, doi: 10.1007/978-3-030-53980-1_103.

D. F. Muñoz, “Comparison of five estimation methods for the parameters of the Johnson unbounded distribution using simulated and real-data samples,” Comput. Stat., 2025, doi: 10.1007/s00180-024-01596-w.

A. Hossain and H. Howlader, “Unweighted least squares estimation of weibull parameters,” J. Stat. Comput. Simul., vol. 54, no. 1–3, pp. 265–271, Apr. 1996, doi: 10.1080/00949659608811732.

Ahmed, “Comparison of the Bayesian and Maximum Likelihood Estimation for Weibull Distribution,” J. Math. Stat., vol. 6, no. 2, pp. 100–104, Apr. 2010, doi: 10.3844/jmssp.2010.100.104.

A. Hossain and W. Zimmer, “Comparison of estimation methods for weibull parameters: Complete and censored samples,” J. Stat. Comput. Simul., vol. 73, no. 2, pp. 145–153, Jan. 2003, doi: 10.1080/00949650215730.

D. R. Cox and D. Oakes, “Analysis of Survival Data,” Anal. Surviv. Data, pp. 142–155, 2018, doi: 10.1201/9781315137438-9.

J. F. Lawless, “Statistical Models and Methods for Lifetime Data,” John Wiley Sons, 1982.

R. M. Soland, “Bayesian Analysis of the Weibull Process With Unknown Scale and Shape Parameters,” IEEE Trans. Reliab., vol. R-18, no. 4, pp. 181–184, Nov. 1969, doi: 10.1109/TR.1969.5216348.

C. B. Guure and N. A. Ibrahim, “Methods for Estimating the 2-Parameter Weibull Distribution with Type-I Censored Data,” Res. J. Appl. Sci. Eng. Technol., vol. 5, no. 3, pp. 689–694, Jan. 2013, doi: 10.19026/rjaset.5.5010.

A. Gautam, “Comparison of Weibull parameter estimation methods using LiDAR and mast wind data in an Indian offshore site: The Gulf of Khambhat,” Ocean Eng., vol. 266, 2022, doi: 10.1016/j.oceaneng.2022.112927.

P. H. Jou, “Comparison of parameter estimation methods of the two-parameter Weibull distribution,” Sustain. Water Resour. Manag., vol. 8, no. 4, 2022, doi: 10.1007/s40899-022-00709-x.

M. Sumair, “Efficiency comparison of historical and newly developed Weibull parameters estimation methods,” Energy Explor. Exploit., vol. 39, no. 6, pp. 2257–2278, 2021, doi: 10.1177/0144598720959758.

O. Jalnefjord, “Comparison of methods for intravoxel incoherent motion parameter estimation in the brain from flow-compensated and non-flow-compensated diffusion-encoded data,” Magn. Reson. Med., vol. 92, no. 1, pp. 303–318, 2024, doi: 10.1002/mrm.30042.

E. Uzun, “Comparison of Parameter Estimation Methods for Determining the Parametersof the Battery Electrical Equivalent Circuit Model,” Electrical-Electronics and Biomedical Engineering Conference, ELECO 2024 - Proceedings. 2024, doi: 10.1109/ELECO64362.2024.10847219.

X. Yang, “Comparison of Three-parameter Weibull Shape Parameter Estimation Methods and Its Recommended Values,” Jixie Gongcheng Xuebao/Journal Mech. Eng., vol. 60, no. 16, pp. 367–376, 2024, doi: 10.3901/JME.2024.16.367.

S. Innan, “Parameter-Free Interval Priority Weight Estimation Methods Based on Minimum Conceivable Ranges Under a Crisp Pairwise Comparison Matrix,” J. Adv. Comput. Intell. Intell. Informatics, vol. 28, no. 2, pp. 333–351, 2024, doi: 10.20965/jaciii.2024.p0333.

D. Kundu and D. Mitra, “Bayesian inference of Weibull distribution based on left truncated and right censored data,” Comput. Stat. Data Anal., vol. 99, pp. 38–50, Jul. 2016, doi: 10.1016/j.csda.2016.01.001.

Papadopoulos and Tsokos, “Bayesian analysis of the Weibull failure model with unknown scale and shape parameters,” Statistica.

P. Nizeyimana, “Bayesian Estimation of Neyman–Scott Rectangular Pulse Model Parameters in Comparison with Other Parameter Estimation Methods,” Water (Switzerland), vol. 16, no. 17, 2024, doi: 10.3390/w16172515.

Published
2025-03-31
How to Cite
Najmaldin, D. (2025). [RETRACTED] Comparison of Parameter Estimation Methods in Weibull Distribution: Retracted for violating publication ethics – copied content. Indonesian Journal of Data and Science, 6(1), 1-9. https://doi.org/10.56705/ijodas.v6i1.178