Effectiveness Evaluation of the RandomForest Algorithm in Classifying CancerLips Data

  • Siti Khomsah Institut Teknologi Telkom Purwokerto
  • Edi Faizal Universitas Teknologi Digital Indonesia

Keywords: Lip Cancer, RandomForest Algorithm, Canny Segmentation, Hu Moments, Medical Image Classification

Abstract

Lip cancer, though less commonly discussed, remains a significant concern in the realm of oncology. Early detection and diagnosis are paramount for improved patient outcomes. This research evaluated the effectiveness of the RandomForest algorithm in classifying the CancerLips dataset, a collection of lip images processed using the Canny segmentation method and described using Hu moments. Using a 5-fold cross-validation approach, the algorithm achieved an average accuracy of approximately 70.96%. The results highlight the potential of machine learning techniques, specifically RandomForest, in aiding lip cancer detection. However, the choice of preprocessing methods and feature extraction plays a crucial role in determining the outcome. The study underscores the need for further research, focusing on algorithm optimization and comparisons with other datasets or feature extraction methods, to enhance diagnostic precision in medical imaging.

References

F. T. Admojo and Ahsanawati, “Klasifikasi Aroma Alkohol Menggunakan Metode KNN,” Indones. J. Data Sci., vol. 1, no. 2, pp. 34–38, 2020.

A. Z. Zami, O. Nurdiawan, and G. Dwilestari, “Klasifikasi Kondisi Gizi Bayi Bawah Lima Tahun Pada Posyandu Melati Dengan Menggunakan Algoritma Decision Tree,” vol. 3, pp. 305–310, 2022, doi: 10.30865/json.v3i3.3892.

A. Tangkelayuk and E. Mailoa, “Klasifikasi Kualitas Air Menggunakan Metode KNN , Naïve Bayes Dan Decision Tree,” vol. 9, no. 2, pp. 1109–1119, 2022.

F. T. Admojo and S. R. Jabir, “Analisis performa metode Naïve Bayesh Classifier pada Electronic Nose dalam identifikasi formalin pada tahu,” Indones. J. Data Sci., vol. 4, no. 1, pp. 1–16, 2023, doi: 10.56705/ijodas.v4i1.67.

A. Aisyah and S. Anraeni, “Analisis Penerapan Metode K-Nearest Neighbor (K-NN) pada Dataset Citra Penyakit Malaria,” Indones. J. Data Sci., vol. 3, no. 1, pp. 17–29, 2022, doi: 10.56705/ijodas.v3i1.22.

D. Cahyanti, A. Rahmayani, and S. Ainy, “Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara,” Indones. J. Data Sci., vol. 1, no. 2, pp. 39–43, 2020.

A. Maulida, “Penerapan Metode Klasifikasi K-Nearest Neigbor pada Dataset Penderita Penyakit Diabetes,” Indones. J. Data Sci., vol. 1, no. 2, pp. 29–33, 2020.

H. Azis, F. Fattah, and P. Putri, “Performa Klasifikasi K-NN dan Cross-validation pada Data Pasien Pengidap Penyakit Jantung,” Ilk. J. Ilm., vol. 12, no. 2, pp. 81–86, 2020, [Online]. Available: file:///Users/kbh/Downloads/507-2012-5-PB.pdf.

I. P. Putri, “Analisis Performa Metode K- Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular,” Indones. J. Data Sci., vol. 2, no. 1, pp. 21–28, 2021, doi: 10.33096/ijodas.v2i1.25.

L. Saiman and R. Satra, “Analisis performa metode Support Vector Machine untuk klasifikasi dataset aroma tahu berformalin,” Indones. J. Data Sci., vol. 2, no. 2, pp. 50–61, 2021, doi: 10.56705/ijodas.v2i2.28.

G. Xie, B. Guo, Z. Huang, Y. Zheng, and Y. Yan, “Combination of Dominant Color Descriptor and Hu Moments in Consistent Zone for Content Based Image Retrieval,” IEEE Access, vol. 8, pp. 146284–146299, 2020, doi: 10.1109/ACCESS.2020.3015285.

M. Radhakrishnan, A. Panneerselvam, and N. Nachimuthu, “Canny edge detection model in mri image segmentation using optimized parameter tuning method,” Intell. Autom. Soft Comput., vol. 26, no. 6, pp. 1185–1199, 2020, doi: 10.32604/iasc.2020.012069.

E. A. Sekehravani, E. Babulak, and M. Masoodi, “Implementing canny edge detection algorithm for noisy image,” Bull. Electr. Eng. Informatics, vol. 9, no. 4, pp. 1404–1410, 2020, doi: 10.11591/eei.v9i4.1837.

A. Mustopa, H. M. Nawawi, S. Agustiani, and S. K. Wildah, “Feature Extraction With Forest Classifer To Predicate Covid 19 Based On Thorax X-Ray Results,” Sistemasi, vol. 11, no. 2, p. 515, 2022, doi: 10.32520/stmsi.v11i2.1966.

R. Ridho, T. Informatika, F. Teknik, and U. M. Jakarta, “KLASIFIKASI DIAGNOSIS PENYAKIT COVID-19 MENGGUNAKAN METODE DECISION TREE,” vol. 11, no. 3, pp. 69–75, 2021.

H. Azis, F. T. Admojo, and E. Susanti, “Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah,” Techno.Com, vol. 19, no. 3, 2020, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Azis, Admojo, Susanti - 2020 - Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah.pdf.

M. M. Baharuddin, T. Hasanuddin, and H. Azis, “Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 28, pp. 269–274, 2019, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Baharuddin, Hasanuddin, Azis - 2019 - Analisis Performa Metode K-Nearest Neighbor untuk Identifikasi Jenis Kaca.pdf.

A. A. Karim, H. Azis, and Y. Salim, “Kinerja Metode C4.5 dalam Penyaluran Bantuan Dana Bencana 1,” Pros. Semin. Nas. Ilmu Komput. dan Teknol. Inf., vol. 3, no. 2, pp. 84–87, 2018, [Online]. Available: file:///Users/kbh/Library/Application Support/Mendeley Desktop/Downloaded/Karim, Azis, Salim - 2018 - Kinerja Metode C4.5 dalam Penyaluran Bantuan Dana Bencana 1.pdf.

Ericha Apriliyani and Y. Salim, “Analisis performa metode klasifikasi Naïve Bayes Classifier pada Unbalanced Dataset,” Indones. J. Data Sci., vol. 3, no. 2, pp. 47–54, 2022, doi: 10.56705/ijodas.v3i2.45.

A. Nurul, Y. Salim, and H. Azis, “Analisis performa metode Gaussian Naïve Bayes untuk klasifikasi citra tulisan tangan karakter arab,” Indones. J. Data Sci., vol. 3, no. 3, pp. 115–121, 2022, doi: https://doi.org/10.56705/ijodas.v3i3.54.

Published
2023-05-31